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ABSTRACT
It is crucial in our time of international tensions that scientists preserve objectivity. Certain scientific writers acted in the interests of fossil fuel vendors. 
Most evident is this tendency regarding ionizing radiation, whereas the overestimation of medical side effects of a slight anthropogenic increase of the 
radiation background contributes to the strangulation of atomic energy. The use of nuclear energy for electricity production is on the agenda today due 
to the increasing energy needs of humankind. Health risks and environmental damage are maximal for coal and oil, lower for natural gas, and much low-
er for atomic energy. Counting dormant cancers and questionable cases found by screening exposed populations, overdiagnosis, and registering people 
from clean areas as Chernobyl victims jointly contributed to the elevation of registered thyroid cancer incidence after the accident. Many neglected ma-
lignancies found by the screening in Chernobyl and Urals areas were misinterpreted as aggressive radiogenic cancers and overtreated. The epidemiolog-
ical research on radiation-related malignancies is valuable, but conclusions of certain studies should be revised considering that many cases, interpreted 
as aggressive radiogenic cancers, were neglected. A promising approach to the study of dose-response relationships is lifelong animal experiments.
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INTRODUCTION
It is vital in our time of international tensions that scientists 
preserve objectivity. Potential conflicts of interest should 
be discussed. For many years, we have tried to demonstrate 
that certain scientists’ act following the interests of 
companies and governments selling petroleum and natural 
gas.[1-3] Most evident is this tendency regarding ionizing 
radiation, whereas the overestimation of medical and 
environmental side effects of nuclear energy contributes to 
its strangulation,[4] supporting appeals to dismantle nuclear 
power plants (NPPs). The use of atomic energy for electricity 
production is on the agenda today due to the increasing 
energy needs of humankind. Properly managed NPPs 
bear fewer risks than those using fossil fuels. Health risks 
and environmental damage are maximal for coal and oil, 
lower for natural gas, and much lower for atomic energy  - 
the cleanest, safest, and practically inexhaustible energy 
resource.[4-6] Admittedly, NPPs are possible targets during 
armed conflicts. Overestimation of the health-related impact 
of low-dose exposures contributes to the strangulation of 
atomic energy.

Many papers appeared during the last decades, where 
pathological conditions in populations exposed to low 
ionizing radiation were a priori deemed radiogenic;[7-9] 
others discussed previously.[1-3,10] Among the motives for 
overestimating the damage from the Chernobyl accident 
were foreign aid and participation in international scientific 
cooperation. Furthermore, economic interests have come 
to light: the strangulation of atomic energy.[4] Trimming 
and manipulation of numerical data have been common 
in post-Soviet science.[11] Other biases have been discussed 
elsewhere.[12-14] The selection and self-selection bias noticed 
in exposed populations are particularly significant.[15-17] The 
formal analysis indicated that there has been some selection 
bias for many endpoints, particularly solid cancer and 
leukemia.[18] Persons receiving relatively high doses would 
care more about their health and frequently ask for medical 
attention. The diagnostics would be averagely more thorough 
in such people as medics may be informed about the patients' 
higher doses.

The following comparisons are of importance in this 
connection. Individual dose rates from the natural radiation 

*Corresponding author: Dr. Sergei V. Jargin MD, Department of Pathology, RUDN University, 117198 Moscow, Russian Federation. sjargin@hotmail.com

Received: 08 August 2023 Accepted: 17 August 2023 EPub Ahead of Print: 10 November 2023 Published: 25 January 2024 DOI 10.25259/JHSR_36_2023
001000



Jargin: Radiation and cancer

Journal of Health Science Research • Volume 9 • Issue 1 • January-June 2024 • 26

background (NRB) are usually within the range of 1.0-
10 mSv/year; mean values for some countries are above 10 
mSv/year.[19,20] Effective doses among federal subjects of 
Russia ranged from 2.47 to 9.06 mSv/year, with an average 
of 4.18 mSv/year.[21] According to United Nations Scientific 
Committee on the Effects of Atomic Radiation  (UNSCEAR), 
the mean cumulative dose for 1986-2005 to six million 
inhabitants of the areas recognized as contaminated after 
Chernobyl was ~9 mSv.[22] In the life span study (LSS) of 
atomic bomb survivors of Hiroshima and Nagasaki, there was 
a significant dose-effect association for cancer among persons 
who received ≤500 mSv. However, the statistical significance 
disappeared if only doses ≤200 mSv were considered.[23-25] 
The doses below 100 mGy at low rates induced adaptive 
responses.[26]

RADIOACTIVE CONTAMINATION IN THE 
URALS
Consequences of the radioactive contamination in the Urals 
were summarily more significant than those after the Chernobyl 
disaster. The difference is that the latter was due to an accident, 
but the former was a contamination lasting over 70 years with 
several accidents. Apart from professional exposures, the 
disposal of radioactive substances into the river Techa, the 1957 
Kyshtym accident, and dispersion by winds from Lake Karachay 
in 1967 led to residents' exposure. The East Urals Radioactive 
Trace (EURT) cohort included people exposed after the 
Kyshtym accident. The Chernobyl disaster and some cancer-
related aspects of EURT have been discussed in more detail.[1-3]

In earlier studies (until 2005-2010), Russian researchers found 
no cancer increase in populations with average exposures 
below 0.5 Sv or among general Mayak Production Association 
(MPA) employees.[27-32] The absolute risk of leukemia per 
1 Gy and 10,000 person-years was 3.5-fold smaller in the 
Techa River cohort (TRC) than in LSS. A higher efficiency 
of acute exposure reasonably explained this compared to 
chronic and fractionated ones. Later on, the same experts 
reported comparable or even higher risks of cancer and 
other diseases in the cohorts from the Urals compared to 
LSS.[33-35] Analogously, an earlier study found reduced cancer 
mortality in the EURT populace.[30] A review confirmed 
the same cancer-related and all-cause mortality level in the 
EURT vs. control.[28] In a later report on the same cohort, the 
authors avoided direct comparisons but fitted the figures into 
a linear model. The configurations of dose-response curves 
depicted in this paper seem inconclusive, but an elevated 
cancer risk in the EURT population was claimed.[36] Along 
the same lines, earlier Russian publications pointed out a 
higher biological efficiency of acute exposures compared to 
chronic ones;[27] later on, the same researchers claimed that 
the International Commission on Radiological Protection 

(ICRP) underestimates health risks from chronic exposures, 
and recommended dose and dose-rate effectiveness factor 
(DDREF) = 1.0 for the use in safety regulations.[37] This 
recommendation is unfounded for dose rates comparable 
with those from NRB.[38,39] Potential motives behind this 
metamorphosis have been discussed: financing, publication 
pressure, and, most importantly, exaggeration of health risks 
from low-dose radiation, strangulation of atomic energy, and 
boosting fossil fuel prices.[1-3]

In earlier reports, a mortality increase was not accompanied 
by an incidence elevation of cardio- and cerebrovascular 
diseases in MPA, TRC, and EURT populations.[40-42] This can 
be reasonably explained by greater diagnostic effectiveness 
in exposed people, leading to the detection of mild and 
questionable cases. A similar tendency for cancer was noticed 
among Chernobyl emergency workers.[43] commented 
previously.[44] The mechanism was analogous: Chernobyl 
cleanup workers underwent repeated medical checkups. As 
a result, tumors were efficiently detected, including small, 
dormant cancers and nodules with uncertain malignant 
potential. The early detection and treatment of diseases 
contributed to the diminution of mortality. Besides, some 
differentiated and borderline tumors, statistically filed 
as cancers, did not lead to death. The overestimation of 
cardiovascular consequences of low-dose, low-rate ionizing 
radiation has been reviewed recently.[45]

The excess relative risk (ERR) of cerebrovascular conditions 
in MPA employees was claimed to be even greater than in 
LSS.[46] Of note, some LSS data analyses were compatible 
with hormesis.[47-49] As mentioned above, a dose-response 
correlation for solid cancers and leukemia was detected in LSS 
at doses ≤500 mSv but not ≤200 mSv.[23-25] Furthermore, the 
data on kidney cancer in males indicated hormesis: U-shaped 
dose-response with negative risk estimates at low doses.[49] A 
preceding article by the same researchers showed different 
shapes of dose-response curves for men and women.[50] Other 
studies found no significant risks for renal cancer from low 
radiation doses.[51-53] Apparently, epidemiological data have 
too many uncertainties for a reliable evaluation of hormesis; 
large-scale animal experiments would be more informative.

Considering the above, the EURT experts' following statements 
may create a biased impression. The statements cited below, 
not specifying dose levels, are apparently inapplicable to the 
cohorts from the Urals and to low radiation doses in general. 
Here follow the examples:

“It was shown that ionizing radiation is one of the promoters 
of the development of atherosclerosis”[54]

“It is concluded that this study provides evidence for an 
association of lower extremity arterial disease incidence with 
dose from external gamma-rays.”[55]
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“This study provides strong evidence of ischemic heart 
disease incidence and mortality association with external 
gamma-ray exposure and some evidence of ischemic heart 
disease incidence and mortality association with internal 
alpha-radiation exposure.”[56]

“A significant increasing trend in circulatory diseases 
mortality with increasing dose from internal alpha-radiation 
to the liver was observed.”[57]

“Significant associations were observed between doses 
from external gamma-rays and ischemic heart disease and 
cerebrovascular disease incidence and between internal doses 
from alpha-radiation and ischemic heart disease mortality 
and cerebrovascular disease incidence.”[58]

“Findings are that aortal atherosclerosis prevalence was higher 
in males and females underwent external gamma-irradiation 
of total dose over 0.5 Gy, in males and females underwent 
internal alpha-irradiation from incorporated plutonium of 
total absorbed radiation dose in the liver over 0.025 Gy”.[59]

“There was a significantly increasing trend (ERR/Gy) of 
ischemic heart disease mortality with the total absorbed dose 
to the liver from internal alpha-radiation due to incorporated 
plutonium.”[40]

“The incidence data point to higher risk estimates (of 
cerebrovascular disease in MPA workers) than those from the 
Japanese A-bomb survivors.”[60]

“The categorical analyses showed that cerebrovascular 
disease incidence was significantly higher among workers 
with total absorbed external gamma-ray doses greater than 
0.1 Gy compared to those exposed to lower doses and that 
cerebrovascular disease incidence was also significantly 
higher among workers with total absorbed internal alpha-
particle doses to the liver from incorporated plutonium 
greater than 0.01 Gy compared to those exposed to lower 
doses”.[46]

The risk estimates by Tamara Azizova and co-workers[59] were 
found to be significantly higher than those in other studies.[61] 
Among members of the MPA cohort who received gamma-
ray doses ≥0.1 Gy, circulatory disease incidence was more 
significant than in people exposed to lower doses.[46,62] Cause-
effect relationships are improbable at such a low dose level, 
considering dose comparisons quoted in this review. The 
UNSCEAR could not reach a conclusion concerning causality 
between exposures ≤1-2 Gy and cardiovascular diseases.[63] 
The level 1-2 Gy is an underestimation due to the screening 
effect, selection, and other biases in epidemiological research.

Dose levels associated with cardiac derangements in 
experimental animals and humans after radiotherapy have 
been much more significant than average in Chernobyl and 

Urals populations.[64-67] Results of animal experiments (apart 
from genetically modified animals) are generally compatible 
with hormesis. In some experimental and epidemiological 
studies, low doses were protective against cardiovascular 
diseases.[64] The evidence in favor of hormesis is 
considerable.[13,68-72] In humans, myocardial fibrosis developed 
after radiotherapy at doses above 30 Gy. An increased risk of 
coronary heart disease after radiotherapy was noticed after 
exposures to 7.6-18.4 Gy.[66] which is much higher than the 
mean doses in Chernobyl and the Urals cohorts. It should 
be stressed that unrealistic cardiovascular risks at low-dose 
exposures call into question cancer risks reported by the 
same and other researchers. Finally, the recall bias should 
be mentioned: cancer patients remember radiation-related 
facts more often than healthy controls,[73] which may lead to 
overestimation of doses and dose-effect correlations.

The author agrees that “certain studies[56,58,74,75] should probably 
not be used for epidemiologic analysis, particularly…the 
Russian worker studies”.[76] Russian national mortality data 
is likely to be unsound.[77] The contrast between the medical 
surveillance of nuclear workers and the rest of the population 
has caused bias in data analyses from MPA. About 41% of 
the MPA cohort migrated away by the end of 2005, and 
information on causes of death was derived from various 
regions. The largest number of deaths in 1998-2010 happened 
not in Ozyorsk (where the Mayak facility is located) but 
elsewhere in Russia[77] whereas the reliability of data and 
interpretations are questionable.[3]

Here follows an example of a questionable attribution of 
lesions to radiation: a significantly increased risk of epidermal 
carcinoma was found in workers of MPA after exposures to 
2.0 Sv or more.[78] This formally agrees with the LSS data 
indicating a threshold of ~1.0 Sv.[79] However, an observation 
bias seems to be probable in this study.[78] The workers and 
some medical personnel knew the employment duration 
that correlated with radiation doses. The latter could have 
influenced the diagnostic quality. Doses absorbed within the 
epidermis were not specified in the paper.[78] The workers were 
exposed predominantly to gamma, i.e., low-linear energy 
transfer (LET) radiation, so the doses within the epidermis 
were probably not high. Accordingly, the premalignant 
(actinic) epidermal lesions were “very rare.”[78] It is known 
that radiation exposures may cause premalignant epidermal 
changes, including actinic keratosis[80,81] that was not observed 
in the studied cohort.[78]

Another citation to be commented on: “…important issue 
in the field of radiation protection is the hypothesis of a 
reduction of radiation-associated cancer risk per unit dose 
at low dose-rates.[82-84] Such a hypothesis was derived from 
observations of biological results and has been implemented 
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in the system of radiation protection by the introduction of a 
dose and dose-rate effectiveness factor (DDREF)… For solid 
cancer mortality, summary estimates of ERR/Gy derived 
from the LSS and The International Nuclear Workers Study  
(INWORKS) were similar in magnitude, a finding that does 
not support the conclusion of a reduction of ERR/Gy at low 
dose-rates”.[85] The conclusions regarding DDREF based 
on the studies of nuclear workers receiving doses largely 
compatible with broad-range NRB are unfounded,[38,39] as well 
as the statements that the linear no-threshold theory (LNT) 
for low radiation doses is unrejectable:[86] to reject the LNT, 
it suffices to prove hormesis. Some mathematical models 
suggested DDREF values from two up to infinity;[87] the latter 
agrees with the hormesis concept.

One more comment: the risks of leukemia in MPA employees, 
excluding chronic lymphocytic leukemia (CLL), calculated 
using incidence figures, were significantly greater than those 
calculated based on mortality.[88] A more efficient screening 
in people with higher doses is a probable mechanism. CLL 
is a special matter, often diagnosed early because of enlarged 
lymph nodes.[89]

THYROID CANCER
It is widely agreed that the frequency of thyroid cancer (TC) 
in people exposed at a young age after the Chernobyl accident 
(hereafter accident) increased significantly. The cause-effect 
relationship between Chernobyl exposures and other cancers 
has not been convincingly demonstrated.[22,90] The dramatic 
elevation of TC 4-5 years after the accident coincided with 
the start of mass screening;[9] it could be predicted neither 
from LSS nor from experience with radiotherapy.[91-100] The 
evidence of correlations between radiation doses and cancer 
risks comes predominantly from the epidemiological research 
associated with bias discussed in this article and elsewhere.[3]

Before the Chernobyl accident, the registered incidence of 
childhood TC in the Soviet Union was lower than in other 
industrialized countries.[101-105] The predominant increase 
among children and adolescents can be explained by the fact 
that the youth, contrary to older people, was actively screened 
at schools and kindergartens after the accident. Despite the 
normalized radiation background, awareness about thyroid 
tumors among medics and the population contributed to the 
enhanced TC incidence decades after the accident.[106,107] The 
detection rate of TC is known to depend on the screening 
intensity due to the pool of undiagnosed, dormant, and 
borderline tumors.[4,108]

The considerations delineated above have been camouflaged. 
The period 1986-1990 (when the TC frequency started to 
grow after the accident) was chosen for comparison with 
post-accident figures[109] “Since 1986, and not earlier, specific 

data on thyroid cancer incidence have been specifically 
collected by local oncologists” (UNSCEAR Secretariat, e-mail 
communication, 2013). It was stated that the TC incidence in 
Belarus in the period 1971-1985 did not significantly differ 
from global statistics,[110] referring to the paper,[95] where no 
such information was found. The pre-accident TC incidence 
in children <10 years old in Belarus and Ukraine was claimed 
without references to be 2-4 per million per year,[111] which is 
much higher than statistics published earlier (0.3 in Belarus, 
0.1 in the North of Ukraine).[102] Extensive screening after 
the Chernobyl disaster found small tumors and neglected 
malignancies misinterpreted as radiogenic cancers arising 
after a short latency. Besides, residents were preoccupied with 
their recognition as victims of the accident to gain access to 
compensation and other provisions.[112] Cases brought from 
non-contaminated territories tended to be more advanced 
because there had been no mass screening outside the 
Chernobyl area. Accordingly, TCs found ten years after the 
accident were, on average, more advanced than those detected 
later.[113,114] Many early patients had advanced TC with distant 
metastases.[115]

Counting dormant cancers and questionable cases among 
malignancies, false-positivity, and registering people from 
clean areas as Chernobyl victims jointly contributed to the 
elevation of the recorded TC incidence after the Chernobyl 
disaster.[1-3,116] The frequency of papillary microcarcinoma in 
the general population was estimated at 1/200 people ≥ 30 
years old;[117] its finding by the screening would elevate the 
detection rate considerably. In this connection, the following 
statement is potentially misleading: “77% of primary tumors 
were larger than 1 cm, suggesting that these were not 
incidental TCs detected by screening”.[118] It should be noted 
that the screening can find small nodules and advanced 
tumors, especially if targeted medical examinations have not 
covered the populace.

A recent study reported, “dose-related increases in DNA 
double-strand breaks in human TCs developing after the 
Chernobyl accident”.[119] This is not surprising considering 
that people with higher doses were generally better 
examined, and advanced malignancies were misinterpreted 
as rapidly growing radiogenic cancers: mutations tend to 
accumulate along with the neoplastic progression.[120,121] 
As for the lower TC incidence among people born after the 
accident, there were no motives to inflate the statistics, while 
the screening exhausted the pool of latent and neglected 
cases. The understanding of these facts finds its way to the 
literature: a recent study negated phenotypic differences 
between sporadic and supposedly radiogenic TCs[122] in 
contrast with preceding papers by the same research group, 
e.g.,[8] Analogous suggestions published more than a decade 
before[123] are, however, not cited.
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OVERTREATMENT OF SUPPOSEDLY 
RADIOGENIC CANCER AND PRECANCEROUS 
LESIONS 
The misinterpretation of neglected cancers, found by the 
screening, as rapidly growing radiogenic malignancies gave 
rise to the concept that radiogenic cancers are generally 
more aggressive. This contributed to the excessive radicalism 
of thyroid cancer (TC) treatment. The following was 
recommended for post-Chernobyl TC in children: “Radical 
thyroid surgery including total thyroidectomy combined 
with neck dissection followed by radioiodine ablation”[101] and 
radiotherapy with 40 Gy.[124] Side effects of the radioiodine 
therapy included salivary gland dysfunction (44.8% of cases), 
xerostomia (36%), and depressive states (38%).[125] Certain 
experts deemed subtotal thyroidectomy “oncologically 
not justified” and recommended total thyroidectomy with 
prophylactic neck dissection.[126-129] Less radical surgery was 
“only acceptable in exceptional cases of very small solitary 
intrathyroidal carcinomas without evidence of neck lymph 
node involvement on surgical revision.”[130] It was claimed 
that bilateral neck dissection is indicated for all TCs 
irrespective of size (including microcarcinoma), histological 
type, and lymph node involvement.[131] A similar approach 
was applied to radiation-exposed TC patients in the Urals.[132]

According to a recent report from Belarus, 69% of post-
Chernobyl pediatric patients underwent total thyroidectomy; 
among them, radioiodine therapy was carried out in 69% 
of cases. For comparison, in patients diagnosed with TC 
after the Fukushima Daiichi accident, hemithyroidectomy 
was performed in 92% and total thyroidectomy in 8% of 
cases only.[125] In a study from Ukraine, “given the presence 
of radiation exposure in the patients’ histories,” total 
thyroidectomy was performed in 405 out of 465 papillary 
thyroid microcarcinomas (87.1%) with postoperative 
radioiodine therapy in 76.1% of the cases. The neck dissection 
was performed in ~50% of the cases.[133] Of note, recurrences 
to lymph nodes were detected only in 1.3% of the patients 
(median follow-up of 5.2 years). At the same time, the authors 
noted that microcarcinomas in their series were “rather 
indolent” and advised “more frequent organ-preserving 
surgeries vs. total thyroidectomy even for potentially 
radiogenic papillary thyroid microcarcinomas.”[133] In another 
paper, the same authors rightly concluded that “internal 
irradiation does not affect tumor phenotype… and does 
not worsen prognosis in pediatric or young adult patients 
with papillary thyroid microcarcinoma, implying that 
radiation history may not be a pivotal factor for determining 
treatment strategy”.[122] The long-term overall survival of post-
Chernobyl TC patients was designated as excellent: during 
the 1990-2014 period, 21 (1.9%) pediatric TC patients died, 
among them only 2 from advanced cancer, 3 from secondary 

malignancies, 3 from other internal diseases, 6 due to trauma; 
7 TC patients committed suicide.[125] These figures indicate the 
overdiagnosis and overuse of total thyroidectomy, associated 
with complications: hypoparathyroidism and recurrent 
laryngeal nerve palsy. The neck dissection is also associated 
with adverse effects.

Epidemiologists issued warnings against false-positive 
diagnoses of malignancy in thyroid nodules.[117,134] Many 
experts argued that the worldwide increase in TC incidence 
(not only in children) is caused by screening, medical 
surveillance improvements, and technological diagnostics 
advancements.[125,135] The author agrees with the following 
conclusions: “After the Chernobyl and Fukushima nuclear 
accidents, thyroid cancer screening was implemented 
mainly for children, leading to case over-diagnosis;” “The 
existence of a natural reservoir of latent thyroid carcinomas, 
together with advancements in diagnostic practices leading 
to case overdiagnosis, explain, at least partially, the rise in 
TC incidence in many countries;” “Total thyroidectomy, 
as performed after the Chernobyl accident, implies that 
patients must live the rest of their lives with thyroid 
hormone supplementation. Additional treatment using 
radioactive iodine-131 therapy in some cases may result 
in potentially short- or long-term adverse effects”;[136] “The 
extent to which opportunistic thyroid cancer screening is 
converting thousands of asymptomatic persons to cancer 
patients without any known benefit to them needs to be 
examined carefully.”[135] Similar concerns were expressed 
by other experts. American Thyroid Association (ATA) 
guidelines indicate that thyroid nodules less than 1 cm 
should not be biopsied, nodules 1 cm to 1.5 cm should 
be biopsied only when features concerning a malignant 
tumor exist, and papillary thyroid cancer (PTC) nodules 1 
cm or less should be managed with active surveillance or 
lobectomy.[137]

The sources[138-140] were quoted to corroborate the 
recommendation: “The most prevailing opinion calls for total 
thyroidectomy regardless of tumor size and histopathology.”[130] 
This is a misquoting: the talk is about subtotal resection in 
the cited sources, which is not the same.[139-140] Analogously, 
the sources[140-142] were misquoted in the paper.[127] Potential 
health-related, cosmetic, and social (stigmatization as a 
cancer patient) adverse effects of surgical hyper-radicalism are 
known.[117,143-145] Histological images from Russian textbooks, 
potentially conducive to false-positivity, were reproduced and 
discussed previously.[3,116,146] Chernobyl-associated radiophobia 
contributed to the false positivity and overtreatment: 
“Practically all thyroid nodules, independently of their size, 
were regarded at that time in children as potentially malignant 
tumors, requiring an urgent surgery.”[147]
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Mechanisms of false-positivity have been discussed 
previously;[3,116,146] among others, the misinterpretation of 
nuclear pleomorphism as a malignancy criterion of thyroid 
nodules occurred in the former Soviet Union (SU) of the 1990s. 
If the screening finds a thyroid nodule, a fine-needle aspiration 
is usually performed. The thyroid cytology is accompanied 
by some percentage of inconclusive results when histological 
examination is indicated. This percentage was relatively high 
in the former SU due to insufficient experience with pediatric 
material, suboptimal quality of specimens, and insufficient 
use of modern literature. The surgical specimen is sent to 
a pathologist, who may be sometimes prone, after in toto 
resection of the nodule to confirm malignancy even in case of 
uncertainty. The fine-needle aspiration cytology was introduced 
into practice later than ultrasonography, contributing to the 
overdiagnosis of malignancy, especially during the 1990s.

Analogous overtreatment tendencies have been noticed 
regarding renal and bladder lesions.[148-158] Surgeons might 
overuse nephrectomy if they learn that renal-cell carcinoma 
from contaminated territories is, on average, more aggressive, 
while surrounding parenchyma contains “proliferative 
atypical nephropathy with tubular epithelial nuclear atypia 
and carcinoma in situ.”[148] The same Chernobyl experts found 
in patients with the benign prostatic disease and cystitis from 
contaminated territories and the city of Kyiv (not recognized 
as contaminated), severe dysplasia or carcinoma in situ in 
urinary bladders of 56%-73% randomly selected cases.[153-158] 
These percentages are unrealistic for overdiagnosis and 
hypertherapy. Histological images from the papers[153,154] were 
reprinted and commented previously;[159] neither malignancy 
nor severe dysplasia is recognizable. The clinical and 
morphological findings designated as “Chernobyl cystitis” 
or “irradiation cystitis” with “reactive epithelial proliferation 
associated with hemorrhage, fibrin deposits, fibrinoid vascular 
changes, and multinuclear stromal cells”[158] were contributed 
by repeated cystoscopy, “mapping” punch biopsies and 
electrocoagulation of vesical mucosa. The “marked activation 
of angiogenesis,” described in supposedly radiation-related 
cystitis,[154] could have resulted from iatrogenic injury. The 
microphotographs from the papers[160,161] (reproduced[159]) 
indicate that overdiagnosis and overtreatment also occurred 
back in the 1980s.

In conclusion, the following unreasonable claim should be 
commented on: “When considering the effects of irradiation 
on human health, it is necessary to clearly distinguish 
between the effects of increased background radiation to 
which adaptation can occur over many generations at the 
population level and the effects of irradiation as a result of 
accidents or medical procedures.”[162] Note that an equivalent 
dose is essential, no matter where it was received: from natural 
or anthropogenic sources.

DISCUSSION
Mutations and DNA repair are in a permanent balance. There 
must be an optimal exposure level, as it is for many physical 
factors, chemical elements, and compounds, including water 
radiolysis products.[163] NRB has probably been decreasing on 
the Earth's surface.[164] Therefore, an optimal exposure level 
may be even higher than today’s NRB. It can be reasonably 
assumed that the evolutionary adaptation would be operative 
at all ages, including embryogenesis. There are suggestions 
that, in utero, relative risks in LSS may be lower than those in 
some other groups.[18] although acute exposures are generally 
more effective than chronic and fractionated ones, overviewed 
previously.[38,39] This adds doubts about conclusions based 
solely on epidemiological research. The available literature 
does not provide direct evidence that low-dose prenatal 
exposures increase stochastic effects (excess cancer risk) or 
deterministic impact on the offspring.[165]

The optimal approach for radiation protection regulations is 
determining the threshold dose for the carcinogenic effect 
and establishing rules to ensure that professional exposures 
are kept well below.[47,61] According to a recent review, 
epidemiological data provide no convincing evidence of 
harm at doses ≤100 mSv, whereas some studies suggested 
hormesis.[166] The dose level of 200 mSv was mentioned in 
some reviews as a threshold below which radiation-related 
cancer risks are unproven.[23,167,168] Dose reconstructions in 
humans are often imprecise. Screening effect, selection, and 
ideological bias in epidemiological research may contribute 
to the appearance of new reports on enhanced cancer 
risks associated with a moderate increase in the radiation 
background. This would not prove causality. Large-scale 
animal experiments using different species are the most 
reliable tool to determine threshold doses. In utero, damage, 
and corresponding thresholds can also be studied in animals.

CONCLUSION
Certain scientific writers act following the interests of 
companies and governments selling petroleum and natural 
gas. Most evident is this tendency regarding ionizing 
radiation, whereas the overestimation of medical and 
environmental side effects of nuclear energy contributes to 
its strangulation, supporting appeals to dismantle nuclear 
power plants and boosting fossil fuel prices. The use of atomic 
energy for electricity production is on the agenda today due to 
the increasing energy needs of humankind. Health risks and 
environmental damage are maximal for coal and oil, lower for 
natural gas, and much lower for atomic energy - the cleanest, 
safest, and practically inexhaustible energy resource. The 
weightiest argument against NPPs is that they are potential 
targets in armed conflicts. Escalation of conflicts and nuclear 
threats contribute to the boosting of fossil fuel prices. This 
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is probably one of the motives of the Ukraine war, nuclear 
threats, and other militaristic rhetoric. Finally, speculations 
about the extraordinary aggressiveness of radiogenic cancers 
have contributed to the overtreatment. Nuclear energy 
production should be developed under the guidance centered 
in developed countries.
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