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Abstract
Meta-analysis aggregates quantitative outcomes from multiple scientific studies to produce comparable effect sizes. 
The resultant integration of useful information leads to a statistical estimate with higher power and more reliable point 
estimate when compared to the measure derived from any individual study. Effect sizes are usually estimated using mean 
differences of the outcomes of treatment and control groups in experimental studies. Although different software exists 
for the calculations in meta-analysis, understanding how the calculations are done can be useful to many researchers, 
particularly where the values reported in the literature data is not applicable in the software available to the researcher. In 
this paper, search was conducted online primarily using Google and PubMed to retrieve relevant articles on the different 
methods of calculating the effect sizes and the associated confidence intervals, effect size correlation, p values and I2, and 
how to evaluate heterogeneity and publication bias are presented.

1. Introduction
“Meta-analysis is a statistical analysis” developed by 
Glass1 in 1976 to perform a “relatively powerful evalu-
ation of a specific hypothesis and to draw quantitative 
inferences. It integrates the quantitative findings from 
multiple scientific, but similar studies, and provides a 
numerical estimate of the overall effect of interest”1–3. In 
randomised and controlled trials, the effect of interest can 
be “(i) an average of a continuous variable, (ii) a correla-
tion between two variables, (iii) an odds ratio (suitable for 
analyzing retrospective studies), (iv) a relative risk (risk 
ratio) or risk difference (suitable for analyzing prospec-
tive studies), or (v) a proportion”. Randomised studies 
are often considered to reduce bias problem while studies 

with controls are the ones selected because effect sizes of 
the control and treatment groups are the ones that are 
compared. While a study may combine many studies to 
determine the effect size of a particular outcome (e.g., 
cure of malaria), another may compare different effects 
(e.g., cure of malaria, incidence of recrudescence, ant 
malarial resistance, side effects, etc) from the same sets of 
studies included in the study design. 

The basic principle behind meta-analyses lies on a 
common fact behind all conceptually similar scientific 
studies measured with a certain error which is within 
the individual studies. Approaches from statistics are 
then “applied to derive a pooled estimate nearest to the 
unknown common fact based on how the error is per-
ceived”4–6. Different weights are usually assigned to the 
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different studies for calculating the pooled effect. This 
weighting is related with the inverse of the variance and 
hence indirectly to the sample size reported in the stud-
ies. Any set of studies with smaller standard deviation and 
larger sample size are given more weight in the calcula-
tion of the pooled effect size. “The agreement or disagree-
ment between the studies is examined using different 
measures of heterogeneity which refers to the variation 
in study outcomes between studies”4–6. Other than pro-
viding estimate of the unknown common truth, “meta-
analyses have the ability to contrast results from different 
studies and identify patterns among study results, sources 
of disagreement among those results, or other interesting 
relationships that may come to light in the context of mul-
tiple studies”6–8. 

The major benefit of this approach is the aggregation 
of useful information that leads to a higher  statistical 
power and more reliable point estimate when compared 
to the measure derived from any individual study7. Even 
a low-powered meta-analysis utilizing a small number 
of studies can still provide useful information. Thus, 
researchers are often motivated to include meta-anal-
ysis in systematic reviews for reasons which include (1) 
increasing power, (2) to improve precision, (3) to answer 
questions not posed by the individual studies, and (4) to 
settle controversies or generate new hypotheses6.

2.  Models in Meta-Analysis
Two models are commonly used in meta-analysis namely, 
the fixed-effect (common effect) and random-effect mod-
els. Under the fixed-effect model, it is assumed that all 
studies included (i) investigate the same population, (ii) 
apply the same variable and outcome definitions, (iii) 
have one true effect size that underlies all the studies in 
the analysis, and (iv) all differences in observed effects are 
due to sampling error. The inverse of the variance from 
the weighted average of different study estimates (wi = 
1/σ2 where wi is the weight of individual study, and σ is 
the variance within the studies) “is commonly used as 
study weight, such that larger studies tend to contribute 
more than smaller studies to the weighted average”. Thus, 
when studies included a meta-analysis are “dominated 
by a very large study, the findings from smaller studies 
are practically ignored”. However, the assumption here 
is considered unrealistic since research is often disposed 

to different sources of heterogeneity- “a measure of the 
level of inconsistency in different studies”. In the random 
effect model, the assumption is that “the  true effect size 
might differ from one study to another. For example, the 
effect size might be higher (or lower) in studies where 
the participants are older, or more educated, or healthier 
than in other studies, or when a more intensive variant 
of an intervention is used”. Random effect is simply the 
weighted average of the effect sizes of a group of studies 
[wi = 1/(σ2 + τ2) where τ is the variance between the stud-
ies]. The term, “Random”, “reflects the fact that the studies 
included in the analysis are assumed to be a random sam-
ple of all possible studies that meet the inclusion criteria 
for the review”8. This implies that the greater heterogene-
ity, the greater the un-weighting which can get to a point 
when the random effects estimated become simply the 
un-weighted average effect size of the studies8. 

3.  How to Carry Out  
Meta-Analysis
The Cochrane handbook6, and the PRISMA statement8 
as well as the report from Howard et al.,9 provide appro-
priate information on how to carry out systematic review 
and meta-analysis. In general, the steps provided in Table 
1 are useful.

When studies with poor methods are included in the 
data set for meta-analysis, the ability of the meta-analyst 
to compute a strong mean effect size or identify important 
controlling variables may be compromised. It is therefore 
crucial to define and report the criteria on how studies are 
assessed for inclusion. In addition, it is important to thor-
oughly consider whether the studies being considered for 
inclusion can reasonably be combined11. In other words, 
the following questions may be asked: (1) Do the stud-
ies consider common outcome? (2) Were the outcomes 
measured in a similar way? (3) Were the effect sizes deter-
mined using the same outcome measure? These issues 
may be less important in some fields such as ecology when 
compared to others such as pharmacy and medicine. 

That effect sizes are independent is a very important 
statistical assumption in meta-analysis12. “Statistical inde-
pendence implies that each effect size (or sample) rep-
resents an independent entity and the pooled effect size 
does not have a correlated structure. Non-independence 
is a major consideration in data set as it can affect (i) the 
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calculation of effect size statistics and (ii) the estima-
tions of overall meta-analytic estimates with their uncer-
tainty which are two major interrelated components of a 
meta-analysis”13. Potential sources of non-independence 
include multiple effect sizes extraction from a single 
experiment or from different time points throughout 
a study, an effect being measured on each individual or 
simulated in a study and research from multiple species, 
and influence of research group. Non-independence can 
increase type I error rates in meta-analysis. In statistical 
hypothesis testing, a type I error occurs when a true null 
hypothesis is incorrectly rejected (false positive) while a 
type II error is the acceptance of a false null hypothesis 
(false negative). 

4.  Methods
Search was conducted online primarily using Google and 
PubMed databases to retrieve relevant articles on the dif-
ferent methods being used to calculate effect sizes and the 
associated confidence intervals, effect size correlation, p 
values and I2, as well as how to evaluate heterogeneity and 
publication bias based on available records in the data-
bases as at May 2017. The search terms used included, 
‘effect size calculation, ‘effect size and clinical trials’, 
‘calculation of effect size in clinical trials’ ‘randomised 
clinical trials and effect size’, ‘effect size correlation’, ‘het-
erogeneity and effect size’, ‘publication bias’, ‘publication 
bias in clinical trials’, ‘fixed effect and effect size’, and 

‘random effect and effect size’. All articles retrieved that 
were not in English language and had no relevant infor-
mation on effect size, heterogeneity, and publication bias 
were excluded while the rest were evaluated to extract 
relevant information, and as appropriate, used to identify 
other relevant articles. 

Data were independently extracted by the corre-
sponding author and verified by another author.

5.  Results and Discussion

5.1  Calculation of Effect Size in Meta-
Analysis 
Several ways have been used to calculate effect size, but 
the three most popular approaches are those of Gene 
Glass, Hunter-schmidt, and Cohen’s d14. While these dif-
ferent methods of calculation will not necessarily yield 
the same d values for a set of data from studies included 
in a study, the use of a particular method across all the 
studies being considered in a study will effectively com-
pare the effect sizes of the individual studies. 

In fixed-effect model, when a study reports the mean 
and standard deviation (variance) of a treatment and con-
trol groups, Cohen’s d can be used to calculate the stan-
dardised difference between the two means as follows:

Cohen’s 1 2

pooled

µ  - µd =
σ

� (1)

Table 1.  Steps in carrying out meta-analysis
“Step 1 A thorough literature search for studies that address the hypothesis of interest, using defined keywords and search 

methods is performed. This will usually include searching for unpublished studies, for example by posting requests 
to professional manufacturers, newsletters or mailing lists. The research question can be formulated in terms of the 
problem/population, intervention, comparison, and outcome (PICO)10.

Step 2 The resulting studies are critically appraised and evaluated for possible inclusion in the review. Possible questions to be 
addressed for each article include: Is the publication applicable? Are the study methods appropriate? Is there enough 
information to calculate an effect size? (Record the reasons for dropping any studies from your data set). 

Step 3 An appropriate measure of effect size is selected, and the effect size is calculated for each study retained. 
Step 4 The selected studies are entered into a master database; information to be recorded should include study identity 

(author, and year), effect size(s), sample size(s) and information which codes each study for variables which may affect 
the outcome of each study, or whose possible influence on effect size needs to be investigated (experimental design, 
taxonomic information on the study species, geographic location of study population, life-history variables of the species 
used etc). How the effect size(s) is/are calculated for each study is also recorded. 

Step 5 A summary of the cross-study support for the hypothesis of interest is done using meta-analytical methods. Also, any 
variation in conclusions drawn by individual studies is explained.

Step 6 The robustness and power of the analysis (likelihood of type I and type II errors) are determined”8,9 
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1 2

2pooled
σ + σ

=σ � (2)

where d is the effect size, µ1 and µ2 represent the means 
of the effects of the treatment and control group, σ1 and 
σ2 are the standard deviations of the means of the effects 
of the treatment and control and σpooled is the pooled 
standard deviation. However, in random-effect model, 
the introduction of the between studies variance (τ) will 
change σ to VR where

2 2( )RV = σ + τ � (3)

where 2 2 2
1 2τ = σ + σ  based on ‘variance sum law’ for inde-

pendent variables. 
When a study reports a percentage of success after 

taking the treatment or no treatment (hit rate), the fol-
lowing formula15 can be used:

d = arscine(p1) - arscine(p2)� (4)

where p1 and p2 are the hit rates of the control and treat-
ment groups, depending on the direction of the desired 
effect. The arcsine is the inverse of sine and the returned 
angle is given in radians in the range of -π/2 to π/2. In 
Microsoft Excel, this value is calculated as 

arscine(p) = ASIN(p)� (5)

where p is the proportion which must be from -1 to 1.
Using the t test value for a between subjects t statistics 

and the degrees of freedom 

2td
df

= � (6)

When the studies list F statistics, d can be calculating as 
follows:

1 2

2t c

t c

d
n nMSE

n n

µ −µ
=

 + −
 + 

� (7)

or

2
t c t c

t c t c

n n n n
d F

n n n n
   + +

=    
+ −   

� (8)

where MSE is the mean square error, n is the number of 
subjects in the treatment (t) or control (c) group, and F is 
the reported F statistics usually given, for example, with 
the notation, F (dfc,dfs) = fx, where dfc is the degrees of 
freedom based on the number of conditions, dfs is the 
degrees of freedom based on the number of subjects and 
fx is the F value [e.g., F (1,39) = 3.12]

Effect-size correlation (r) is obtained from

2 4

dr
d

=
+

� (9)

2
2

2 4
dr

d
=

+
� (10)

For t statistics,

2

2

tr
t df

=
+

� (11)

The r and r2
 are the proportion of the variance in the sam-

ple or control ‘accounted for’ by the other -- this is the 
proportion of reduction of the variance of the outcome 
measure when it is replaced by the residuals’ variance 
values obtained from a regression equation. When this 
is extended to multiple regressions, it characterizes the 
proportion of the variance accounted for by all the inde-
pendent variables; similar to ANOVA where it is often 
called ‘eta-squared’, η2. Thus, r2 is often advocated as a 
universal measure of effect size.

It is important to note that the means in the above 
equations are arranged in the direction of the effects. For 
example, if desired effect is increase in effect size, the con-
trol mean will be subtracted from the treatment mean. 
Thus, d and r are positive if the mean difference is in the 
predicted direction. 

If the effect size estimate from the sample is d, then 
it is normally distributed, with the following standard 
deviation:

2

2( )
t c

t c t c

n n d
n n n n
+

= +
+

σ �  (12)

where nt is the number in the experimental group while 
and nc is that of the control group. Hence a 95% confi-
dence interval for d would be from 

d – 1.96 × σ to d + 1.96 × σ� (13)
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5.2  Odds Ratio (OR) and Relative Risks (RR)
OR and RR are other possible indices of effect in group 
designs. An example of a report of meta-analysis where 
OR was used in the estimation is shown in Figure 15. 
Using both fixed and random effect models, an example 
of a “forest plot” from meta-analysis of different studies is 
illustrated in Figure 2. 

Figure 1.  Example of a meta-analysis using odds ratio for 
measuring effect5.

Kakor et al, 2009 
Jaco, 2010 

Black, 2011 
Dennis et al, 2009 

Abraham, 2008 
 

Total (fixed effects) 

Total (random effects)

 
Meta analysis

 
 
 
 
 
 
 
 
 
 
 0.1 101.0 100

Figure 2.  Hypothetical Forest plot of the odds ratios of 
five studies showing their 95% confidence intervals, and the 
fixed/random effects.

Odds ratio reflects the odds of a successful or desired out-
come in the intervention group relative to the odds of a 
similar outcome in the control group. Consider the fol-
lowing 2x2 frequency table (Table 2).

Table 2.  Exposure versus outcome status
Outcome status

Exposure status + -
+ a b
- x y
a, number of exposed cases; b, number of exposed non-cases; x, 
number of unexposed cases; y, number of unexposed non-cases

/
/

a x ayOR
b y bx

= = � (14)

number of events (good or bad) in treated or control groups
number of pe

Absolute risk (AR

ople in that 

)=

group

� (15)

Absolute risk reduction (ARR) = ARC – ART�  (16)

where ARC is the AR of events in the control group and 
ART is the AR of events in the treatment group.

Relative Risk (RR) = ART
ARC

� (17) 

/ ( )
/ ( )

a a b
c x y

+
=

+
� (18)

Relative risk reduction (RRR) = ARC ART
ARC
− � (19)

= 1 – RR� (20)

Number needed to treat (NNT) = 1
ARR

� (21)

The standard deviation (σ) of OR or RR can be calculated 
from

2( ) ( )
( ) ( ) 2( ) ( )
a b x y H
a b x y a b x y
+ + +

σ = +
+ × + + + +

� (22)

where H is the calculated value of OR or RR and a, b, x 
and y are as defined in equation 14.

The 95% confidence interval can be calculated from

M2 – 1.96 × σ to M2 + 1.96 × σ[I2]� (23)

where M is the OR or RR.

5.3  Heterogenicity and Publication Bias
Irrespective of the assumed quality of meta-analysis in 
research, the reliability and strength of any inferences 
derived from it rely on the population of individual studies 
included. Thus, in reporting meta-analysis, issues relating 
to which studies are included are vital. At the same time, 
it is essential to understand some approach of evaluating 
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that the tendency for a true significantly non-zero mean 
effect size is the outcome of a type I error. Also, the like-
lihood of a zero mean effect size is the outcome of the 
absence of a statistical power rather than realistic reflec-
tion of the mean effect size of the population. Both type I 
and II error rates are affected by the number and identity 
of the included studies and their individual sample sizes11.

5.3.1  Heterogenicity 
In meta-analysis, heterogeneity is the variability occur-
ring in outcomes in different studies. It is a consequence 
of clinical or methodological differences (or both) among 
the studies6. Statistical tests of heterogeneity are very 
popular in meta-analyses reports despite their well know 
limitations. Cochran’s Q is a classical measure of hetero-
geneity in different studies16.

2
1

( )k
i i mi

Q w d d
=

= −∑ �  (24)

where wi = 2 2

1
σ + τ

 which is the study weight, di is the 

individual study effect size, dm is the mean of effect size for 
the studies, k is the number of studies, σ is the variance 
within studies (σ[di]) and τ (tau) is the variance between 
the studies (σ[dm]). As indicated in the equation, Q is 
the weighted sum of squared differences between each 
study estimate and the pooled estimate, with the weights 
being those used in the pooling method. “It is distrib-
uted as a chi-square statistic with k -1 degrees of freedom 
(df) where k is the number of studies”16. For fixed effect 
model, τ = 0 (i.e., wi = 1/σ2) as it is assumed that there 
is no variability within the studies unlike random effect 
model. One commonly useful statistics for calculating 
inconsistency in studies is I2.

2

2( )
t c

t c t c

n n d
n n n n
+

τ = +
+

� (25)

where nt and nc are the total numbers of individuals in all 
the studies in the treatment and control groups, respec-
tively.

2 100%Q dfI
Q
−

×= � (26)

where Q is the chi-squared statistic and df is its degrees of 
freedom4,5. This equation describes the percentage of the 
variability in effect estimates that is due to heterogeneity 

rather than sampling error (chance). If the I2 estimate 
from the studies is y, the standard deviation for the distri-
bution is given by

2
2

2(
]

)
[ t c

t c t c

n n y
n

I
n n n

+
+

× +
σ = � (27)

where nt and nc is the total number in the experimental 
group while nc is the total number in the control group. 
Hence a 95% confidence interval for I2 would be from 

I2 – 1.96 × σ[I2] to I2 + 1.96 × σ[I2]� (28)

The thresholds for the interpretation of I2 can be mislead-
ing, as the importance of inconsistency depends on many 
factors. It should be noted that a low value of I2 could have 
only trivial heterogeneity but could also have substantial 
heterogeneity. However, 0% to 40% might not be impor-
tant, 30% to 60% may represent moderate heterogeneity, 
50% to 90% may represent substantial heterogeneity and 
75% to 100% considerable heterogeneity. These cut-off 
points depend on magnitude and direction of effects and 
strength of evidence for heterogeneity such as P value 
from the chi-squared test, or a confidence interval for I2. 
However, I2 values of 25%, 50%, and 75% can be assumed 
to correspond to small, moderate, and large sizes of het-
erogeneity. 

In Microsoft Excel, the function to compute a p-value 
for Q is 

p = CHIDIST (Q, df)� (29)

Thus, if Q = 13.4626 and df = 1, p = CHIDIST (13.4626,1) 
= 0.0002. Usually, if p < 0.05, the difference is assumed to 
be be ‘significant’.

5.3.2  Publication Bias
This often represents the highest potential source of type 
I error (i.e., false positive) in meta-analysis. Over recent 
years, different nomenclatures have been developed for 
bias relating to publication bias. These include the selective 
exclusion of patients from the analysis17, outcome report-
ing bias18, time lag bias19, and location bias20,21. A funnel 
plot (Figure 3) “is a graphical tool commonly used for 
detecting bias in meta-analysis and systematic reviews. In 
this plot, treatment effect is plotted on the horizontal axis 
and the standard error on the vertical axis and the verti-
cal line represents the summary estimated derived using 
fixed-effect meta-analysis. Two diagonal lines represent 
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(pseudo) 95% confidence limits (effect±1.96 SE) around 
the summary effect for each standard error on the verti-
cal axis. These show the expected distribution of studies 
in the absence of heterogeneity or of selection bias. In the 
absence of heterogeneity, 95% of the studies should lie 
within the funnel defined by these diagonal lines”22,23.

Publication bias results in asymmetry of the fun-
nel plot; smaller studies usually show the larger effects. 
However, funnel plot may not always be a reliable tool, 
in particular, when the number of studies included in the 
analysis is small.

5.3.3  Power
In meta-analysis, type II error occurs when a true effect is 
unrecognised. This is often associated with meta-analysis 
done with small number of studies and is of great concern 
when compared to type I errors. Statistical power is the 
probability of meta-analysis detecting the expected effect, 
if the effect actually exists. If a mean effect size is approxi-
mately zero, no significant heterogeneity exists among the 
studies, or it is not concluded that a variable moderated 
the effect size, it becomes important to exclude lack of sta-
tistical power. Depending on the specific mean effect size 
difference (d) and the corresponding standard error (σ) of 
a study, the power varies from one study to another. Large 
powers are indicative of studies where each d is large, and 
σ is small which is an indication that the studies will likely 
identify effects when they are large and/or report a large 
amount of information.

To derive the power of the individual studies that 
contributes to the meta-analysis, the within-study stan-
dard errors are not estimated prior to performing the 

meta-analysis. Instead, the normal within-study approxi-
mations, Yi ∼ N(µi, σI, is used (µi denote the true effect 
in study i, Yi is the study’s estimate of µi and σi is the cor-
responding standard error). It is also assumed that two-
tailed hypothesis tests are applied. The test statistic, H0 : 
µi = µ0 versus H1 : µi ≠ µ0 in the ith study is given by

Zi = (Yi − µ0)∕σi�  (30)

For no effect, µ0 = 0 
H0 : µi = µ0, Zi ∼ N(0, 1) …. null hypothesis
Zi ∼ N(δi∕σi, 1) where δi = µi − µ0 …. alternate hypothesis
Using a 2-tailed test, the null hypothesis is rejected by 

the ith study if |Zi| < Za, and accepted if |Zi| < Za, where Za 
is the critical value from a standard normal distribution 
given by Za = 1.96; Za is the conventional 5% significance 
level assumed to have been used in the analysis. The prob-
ability (p) of accepting the null hypothesis is therefore 
given by

a( ) ( Z  )a
i i

p Z δ δ
= ϕ − −ϕ − −

σ σ
� (31)

where ϕ is the standard normal cumulative distribution 
function. In Microsoft Excel 2010,

ϕ = NORM.S.DIST( z, TRUE)� (32)

And in earlier versions of MS Excel, 

ϕ = NORM.DIST( z, TRUE)� (33)

where z = is the value at which the function is to be evalu-
ated; at 95% confidence interval, z = 1.96 and ϕ = 0.975. 

Figure 3.  Hypothetical symmetrical (left) and asymmetrical (right) funnel plots.
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Thus, the power for a two-tailed test for a fixed-effect 
model is calculated as the probability (p) of correctly 
rejecting a false null hypothesis given by 

a1 ( Z ( ) a
i i

p Zδ δ
= + ϕ − + −ϕ +

σ σ
� (34)

For a randon-effect model, σi will be replaced with VR 
(Equation (3)) which gives 

bR(δ, τ2, σ) = 1 + ϕ(−Za –
RV

δ ) − ϕ(Za –
RV

δ )

p = 1 + ϕ(−Za +
RV

δ ) − ϕ(Za +
RV

δ
)24� (35)

6.  Conclusion
There is no doubt that meta-analysis provides very use-
ful information in making decisions in the practice of 
pharmacy. Results from the integration of small number 
of studies should be accepted with some caution, even if 
the p value indicates extreme statistical significance. So 
long as studies are well conducted, those involving sev-
eral hundred of events are more likely to be reliable and 
clinically useful. Overall, the application of individual 
patient data in meta-analysis may always provide the best 
evidence of treatment effects in cohort studies and in clin-
ically important subgroups.

In reporting, it is important to provide the following 
d, r2, mean of d and the 95% Confidence Interval (CI) of 
the d, Q, df, p value for Q, I2 and 95% CI of I2 as well as the 
power of the study.
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